- 时间:2021-05-04 05:04 编辑: 来源: 阅读:
- 扫一扫,手机访问
摘要:Python处理JSON数据并生成条形图
[b]一、JSON 数据准备[/b]
首先准备一份 JSON 数据,这份数据共有 3560 条内容,每条内容结构如下:
[img]http://img.1sucai.cn/uploads/article/2018010709/20180107090111_0_71541.png[/img]
本示例主要是以 tz(timezone 时区) 这一字段的值,分析这份数据里时区的分布情况。
[b]二、将 JSON 数据转换成 Python 字典[/b]
代码如下:
[img]http://img.1sucai.cn/uploads/article/2018010709/20180107090112_1_78056.png[/img]
[b]三、统计 tz 值分布情况,以“时区:总数”的形式生成统计结果[/b]
要想达到这一目的,需要先将[b]records [/b]转换成[b]DataFrame[/b],[b]DataFrame [/b]是[b]Pandas [/b]里最重要的数据结构,它可以将数据以表格的形式表示;然后用 [code]value_counts() [/code]方法汇总:
[img]http://img.1sucai.cn/uploads/article/2018010709/20180107090112_2_11704.png[/img]
[b]四、根据统计结果生成条形图[/b]
生成条形图之前,为了数据的完整,可以给结果中缺失的时区添加一个值(这里用Missing表示),而每条时区内容里缺失的值也需要添加一个未知的值(这里用Unknown表示):
[img]http://img.1sucai.cn/uploads/article/2018010709/20180107090113_3_44832.png[/img]
然后使用 [code]plot() [/code]方法既可生成条形图:
[img]http://img.1sucai.cn/uploads/article/2018010709/20180107090113_4_37762.png[/img]
到这里就是一个完整的处理 JSON 数据生成统计结果和条形图的例子;不过还可以对这份统计结果进行进一步的处理,以得到更加详细的结果。
每条数据里还有一个 agent 值,即浏览器的 USER_AGENT 信息,通过这一信息可以得知所使用的操作系统,所以对上一步生成的统计结果还可以按操作系统的不同加以区分。
[b]agent 值:[/b]
[b][img]http://img.1sucai.cn/uploads/article/2018010709/20180107090114_5_51953.png[/img]
[/b]
[b]五、将条形图以操作系统(Windows/非Windows)加以区分[/b]
不是所有的数据都有 a 这个字段,首先过滤掉没有 agent 值的数据; 然后根据时区和操作系统列表对数据分组,然后 对分组结果进行计数:
[img]http://img.1sucai.cn/uploads/article/2018010709/20180107090114_6_39744.png[/img]
最后选择出现次数最多的10个时区的数据 生成一张条形图:
[img]http://img.1sucai.cn/uploads/article/2018010709/20180107090115_7_19377.png[/img]
这样就得到了以不同操作系统加以区分的条形图统计结果:
[img]http://img.1sucai.cn/uploads/article/2018010709/20180107090115_8_83461.png[/img]
以上就是Python处理JSON数据并生成条形图的全部内容,希望本文对大家学习Python和JSON都能有所帮助。