# Save the DB on disk: # # save <seconds> <changes> # # Will save the DB if both the given number of seconds and the given # number of write operations against the DB occurred. # # In the example below the behaviour will be to save: # after 900 sec (15 min) if at least 1 key changed # after 300 sec (5 min) if at least 10 keys changed # after 60 sec if at least 10000 keys changed # # Note: you can disable saving completely by commenting out all "save" lines. # # It is also possible to remove all the previously configured save # points by adding a save directive with a single empty string argument # like in the following example: # # save "" save 900 1 save 300 10 save 60 10000
/* This is our timer interrupt, called server.hz times per second.
* Here is where we do a number of things that need to be done asynchronously.
* For instance:
*
* - Active expired keys collection (it is also performed in a lazy way on
* lookup).
* - Software watchdog.
* - Update some statistic.
* - Incremental rehashing of the DBs hash tables.
* - Triggering BGSAVE / AOF rewrite, and handling of terminated children.
* - Clients timeout of different kinds.
* - Replication reconnection.
* - Many more...
*
* Everything directly called here will be called server.hz times per second,
* so in order to throttle execution of things we want to do less frequently
* a macro is used: run_with_period(milliseconds) { .... }
*/
int serverCron(struct aeEventLoop *eventLoop, long long id, void *clientData) {
机械节能产品生产企业官网模板...
大气智能家居家具装修装饰类企业通用网站模板...
礼品公司网站模板
宽屏简约大气婚纱摄影影楼模板...
蓝白WAP手机综合医院类整站源码(独立后台)...苏ICP备2024110244号-2 苏公网安备32050702011978号 增值电信业务经营许可证编号:苏B2-20251499 | Copyright 2018 - 2025 源码网商城 (www.ymwmall.com) 版权所有