源码网商城,靠谱的源码在线交易网站 我的订单 购物车 帮助

源码网商城

一些常用的Python爬虫技巧汇总

  • 时间:2021-04-23 17:07 编辑: 来源: 阅读:
  • 扫一扫,手机访问
摘要:一些常用的Python爬虫技巧汇总
Python爬虫:一些常用的爬虫技巧总结 爬虫在开发过程中也有很多复用的过程,这里总结一下,以后也能省些事情。 [b]1、基本抓取网页[/b] get方法
import urllib2
url "http://www.baidu.com"
respons = urllib2.urlopen(url)
print response.read()

post方法
import urllib
import urllib2

url = "http://abcde.com"
form = {'name':'abc','password':'1234'}
form_data = urllib.urlencode(form)
request = urllib2.Request(url,form_data)
response = urllib2.urlopen(request)
print response.read()

[b]2、使用代理IP[/b] 在开发爬虫过程中经常会遇到IP被封掉的情况,这时就需要用到代理IP; 在urllib2包中有ProxyHandler类,通过此类可以设置代理访问网页,如下代码片段:
import urllib2

proxy = urllib2.ProxyHandler({'http': '127.0.0.1:8087'})
opener = urllib2.build_opener(proxy)
urllib2.install_opener(opener)
response = urllib2.urlopen('http://www.baidu.com')
print response.read()

[b]3、Cookies处理[/b] cookies是某些网站为了辨别用户身份、进行session跟踪而储存在用户本地终端上的数据(通常经过加密),python提供了cookielib模块用于处理cookies,cookielib模块的主要作用是提供可存储cookie的对象,以便于与urllib2模块配合使用来访问Internet资源. 代码片段:
import urllib2, cookielib

cookie_support= urllib2.HTTPCookieProcessor(cookielib.CookieJar())
opener = urllib2.build_opener(cookie_support)
urllib2.install_opener(opener)
content = urllib2.urlopen('http://XXXX').read()

关键在于CookieJar(),它用于管理HTTP cookie值、存储HTTP请求生成的cookie、向传出的HTTP请求添加cookie的对象。整个cookie都存储在内存中,对CookieJar实例进行垃圾回收后cookie也将丢失,所有过程都不需要单独去操作。 手动添加cookie
[url=http://www.1sucai.cn/article/79618.htm]http://www.1sucai.cn/article/79618.htm[/url] 正则表达式在线测试:http://tool.oschina.net/regex/ 其次就是解析库了,常用的有两个lxml和BeautifulSoup,对于这两个的使用介绍两个比较好的网站: lxml:http://my.oschina.net/jhao104/blog/639448 BeautifulSoup:http://cuiqingcai.com/1319.html 对于这两个库,我的评价是,都是HTML/XML的处理库,Beautifulsoup纯python实现,效率低,但是功能实用,比如能用通过结果搜索获得某个HTML节点的源码;lxmlC语言编码,高效,支持Xpath [b]6、验证码的处理[/b] 对于一些简单的验证码,可以进行简单的识别。本人也只进行过一些简单的验证码识别。但是有些反人类的验证码,比如12306,可以通过打码平台进行人工打码,当然这是要付费的。 [b]7、gzip压缩[/b] 有没有遇到过某些网页,不论怎么转码都是一团乱码。哈哈,那说明你还不知道许多web服务具有发送压缩数据的能力,这可以将网络线路上传输的大量数据消减 60% 以上。这尤其适用于 XML web 服务,因为 XML 数据 的压缩率可以很高。 但是一般服务器不会为你发送压缩数据,除非你告诉服务器你可以处理压缩数据。 于是需要这样修改代码:
import urllib2, httplib
request = urllib2.Request('http://xxxx.com')
request.add_header('Accept-encoding', 'gzip') 1
opener = urllib2.build_opener()
f = opener.open(request)

这是关键:创建Request对象,添加一个 Accept-encoding 头信息告诉服务器你能接受 gzip 压缩数据 然后就是解压缩数据:
import StringIO
import gzip

compresseddata = f.read() 
compressedstream = StringIO.StringIO(compresseddata)
gzipper = gzip.GzipFile(fileobj=compressedstream) 
print gzipper.read()

[b]8、多线程并发抓取[/b] 单线程太慢的话,就需要多线程了,这里给个简单的线程池模板 这个程序只是简单地打印了1-10,但是可以看出是并发的。 虽然说python的多线程很鸡肋,但是对于爬虫这种网络频繁型,还是能一定程度提高效率的。
from threading import Thread
from Queue import Queue
from time import sleep
# q是任务队列
#NUM是并发线程总数
#JOBS是有多少任务
q = Queue()
NUM = 2
JOBS = 10
#具体的处理函数,负责处理单个任务
def do_somthing_using(arguments):
 print arguments
#这个是工作进程,负责不断从队列取数据并处理
def working():
 while True:
 arguments = q.get()
 do_somthing_using(arguments)
 sleep(1)
 q.task_done()
#fork NUM个线程等待

 alert(“Hello CSDN”);
for i in range(NUM):
 t = Thread(target=working)
 t.setDaemon(True)
 t.start()
#把JOBS排入队列
for i in range(JOBS):
 q.put(i)
#等待所有JOBS完成
q.join()
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持编程素材网。
  • 全部评论(0)
联系客服
客服电话:
400-000-3129
微信版

扫一扫进微信版
返回顶部