源码网商城,靠谱的源码在线交易网站 我的订单 购物车 帮助

源码网商城

Python实现的异步代理爬虫及代理池

  • 时间:2022-03-02 06:57 编辑: 来源: 阅读:
  • 扫一扫,手机访问
摘要:Python实现的异步代理爬虫及代理池
使用python asyncio实现了一个异步代理池,根据规则爬取代理网站上的免费代理,在验证其有效后存入redis中,定期扩展代理的数量并检验池中代理的有效性,移除失效的代理。同时用aiohttp实现了一个server,其他的程序可以通过访问相应的url来从代理池中获取代理。 [b]源码[/b] [url=https://github.com/arrti/proxypool]Github[/url] [b]环境[/b] [list] [*]Python 3.5+[/*] [*]Redis[/*] [*]PhantomJS(可选)[/*] [*]Supervisord(可选)[/*] [/list] 因为代码中大量使用了asyncio的async和await语法,它们是在Python3.5中才提供的,所以最好使用Python3.5及以上的版本,我使用的是Python3.6。 [b]依赖[/b] [list] [*]redis[/*] [*]aiohttp[/*] [*]bs4[/*] [*]lxml[/*] [*]requests[/*] [*]selenium[/*] [/list] selenium包主要是用来操作PhantomJS的。 下面来对代码进行说明。 [b]1. 爬虫部分[/b] [b]核心代码[/b]
async def start(self):
 for rule in self._rules:
 parser = asyncio.ensure_future(self._parse_page(rule)) # 根据规则解析页面来获取代理
 logger.debug('{0} crawler started'.format(rule.__rule_name__))
 if not rule.use_phantomjs:
  await page_download(ProxyCrawler._url_generator(rule), self._pages, self._stop_flag) # 爬取代理网站的页面
 else:
  await page_download_phantomjs(ProxyCrawler._url_generator(rule), self._pages,
rule.phantomjs_load_flag, self._stop_flag) # 使用PhantomJS爬取
 await self._pages.join()
 parser.cancel()
 logger.debug('{0} crawler finished'.format(rule.__rule_name__))
上面的核心代码实际上是一个用asyncio.Queue实现的生产-消费者模型,下面是该模型的一个简单实现:
import asyncio
from random import random
async def produce(queue, n):
 for x in range(1, n + 1):
 print('produce ', x)
 await asyncio.sleep(random())
 await queue.put(x) # 向queue中放入item
async def consume(queue):
 while 1:
 item = await queue.get() # 等待从queue中获取item
 print('consume ', item)
 await asyncio.sleep(random())
 queue.task_done() # 通知queue当前item处理完毕 
async def run(n):
 queue = asyncio.Queue()
 consumer = asyncio.ensure_future(consume(queue))
 await produce(queue, n) # 等待生产者结束
 await queue.join() # 阻塞直到queue不为空
 consumer.cancel() # 取消消费者任务,否则它会一直阻塞在get方法处
def aio_queue_run(n):
 loop = asyncio.get_event_loop()
 try:
 loop.run_until_complete(run(n)) # 持续运行event loop直到任务run(n)结束
 finally:
 loop.close()
if __name__ == '__main__':
 aio_queue_run(5)
运行上面的代码,一种可能的输出如下:
produce 1
produce 2
consume 1
produce 3
produce 4
consume 2
produce 5
consume 3
consume 4
consume 5
[b]爬取页面[/b]
async def page_download(urls, pages, flag):
 url_generator = urls
 async with aiohttp.ClientSession() as session:
 for url in url_generator:
  if flag.is_set():
  break
  await asyncio.sleep(uniform(delay - 0.5, delay + 1))
  logger.debug('crawling proxy web page {0}'.format(url))
  try:
  async with session.get(url, headers=headers, timeout=10) as response:
   page = await response.text()
   parsed = html.fromstring(decode_html(page)) # 使用bs4来辅助lxml解码网页:http://lxml.de/elementsoup.html#Using only the encoding detection
   await pages.put(parsed)
   url_generator.send(parsed) # 根据当前页面来获取下一页的地址
  except StopIteration:
  break
  except asyncio.TimeoutError:
  logger.error('crawling {0} timeout'.format(url))
  continue # TODO: use a proxy
  except Exception as e:
  logger.error(e)
使用aiohttp实现的网页爬取函数,大部分代理网站都可以使用上面的方法来爬取,对于使用js动态生成页面的网站可以使用selenium控制PhantomJS来爬取——本项目对爬虫的效率要求不高,代理网站的更新频率是有限的,不需要频繁的爬取,完全可以使用PhantomJS。 [b]解析代理[/b] 最简单的莫过于用xpath来解析代理了,使用Chrome浏览器的话,直接通过右键就能获得选中的页面元素的xpath:  [img]http://files.jb51.net/file_images/article/201703/2017031709391423.png[/img] 安装Chrome的扩展“XPath Helper”就可以直接在页面上运行和调试xpath,十分方便:  [img]http://files.jb51.net/file_images/article/201703/2017031709391424.jpg?20172179447[/img] BeautifulSoup不支持xpath,使用lxml来解析页面,代码如下:
async def _parse_proxy(self, rule, page):
 ips = page.xpath(rule.ip_xpath) # 根据xpath解析得到list类型的ip地址集合
 ports = page.xpath(rule.port_xpath) # 根据xpath解析得到list类型的ip地址集合
 if not ips or not ports:
 logger.warning('{2} crawler could not get ip(len={0}) or port(len={1}), please check the xpaths or network'.
  format(len(ips), len(ports), rule.__rule_name__))
 return
 proxies = map(lambda x, y: '{0}:{1}'.format(x.text.strip(), y.text.strip()), ips, ports)
 if rule.filters: # 根据过滤字段来过滤代理,如“高匿”、“透明”等
 filters = []
 for i, ft in enumerate(rule.filters_xpath):
  field = page.xpath(ft)
  if not field:
  logger.warning('{1} crawler could not get {0} field, please check the filter xpath'.
   format(rule.filters[i], rule.__rule_name__))
  continue
  filters.append(map(lambda x: x.text.strip(), field))
 filters = zip(*filters)
 selector = map(lambda x: x == rule.filters, filters)
 proxies = compress(proxies, selector)
for proxy in proxies:
await self._proxies.put(proxy) # 解析后的代理放入asyncio.Queue中
[b]爬虫规则[/b] 网站爬取、代理解析、滤等等操作的规则都是由各个代理网站的规则类定义的,使用元类和基类来管理规则类。基类定义如下:
class CrawlerRuleBase(object, metaclass=CrawlerRuleMeta):
 start_url = None
 page_count = 0
 urls_format = None
 next_page_xpath = None
 next_page_host = ''
 use_phantomjs = False
 phantomjs_load_flag = None
 filters = ()
 ip_xpath = None
 port_xpath = None
 filters_xpath = ()
各个参数的含义如下: [code]start_url[/code](必需) 爬虫的起始页面。 [code]ip_xpath[/code](必需) 爬取IP的xpath规则。 [code]port_xpath[/code](必需) 爬取端口号的xpath规则。 [code]page_count[/code] 爬取的页面数量。 [code]urls_format[/code] 页面地址的格式字符串,通过urls_format.format(start_url, n)来生成第n页的地址,这是比较常见的页面地址格式。 [code]next_page_xpath[/code],[code]next_page_host[/code] 由xpath规则来获取下一页的url(常见的是相对路径),结合host得到下一页的地址:next_page_host + url。 [code]use_phantomjs[/code],[code] phantomjs_load_flag[/code] use_phantomjs用于标识爬取该网站是否需要使用PhantomJS,若使用,需定义phantomjs_load_flag(网页上的某个元素,str类型)作为PhantomJS页面加载完毕的标志。 [code]filters[/code] 过滤字段集合,可迭代类型。用于过滤代理。 爬取各个过滤字段的xpath规则,与过滤字段按顺序一一对应。 元类CrawlerRuleMeta用于管理规则类的定义,如:如果定义use_phantomjs=True,则必须定义phantomjs_load_flag,否则会抛出异常,不在此赘述。 目前已经实现的规则有西刺代理、快代理、360代理、66代理和 秘密代理。新增规则类也很简单,通过继承CrawlerRuleBase来定义新的规则类YourRuleClass,放在proxypool/rules目录下,并在该目录下的__init__.py中添加from . import YourRuleClass(这样通过CrawlerRuleBase.__subclasses__()就可以获取全部的规则类了),重启正在运行的proxy pool即可应用新的规则。 [b]2. 检验部分[/b] 免费的代理虽然多,但是可用的却不多,所以爬取到代理后需要对其进行检验,有效的代理才能放入代理池中,而代理也是有时效性的,还要定期对池中的代理进行检验,及时移除失效的代理。 这部分就很简单了,使用aiohttp通过代理来访问某个网站,若超时,则说明代理无效。
async def validate(self, proxies):
 logger.debug('validator started')
 while 1:
 proxy = await proxies.get()
 async with aiohttp.ClientSession() as session:
  try:
  real_proxy = 'http://' + proxy
  async with session.get(self.validate_url, proxy=real_proxy, timeout=validate_timeout) as resp:
   self._conn.put(proxy)
  except Exception as e:
  logger.error(e)
 proxies.task_done()
[b]3. server部分[/b] 使用aiohttp实现了一个web server,启动后,访问[url=]http://host:port[/url]即可显示主页: [img]http://files.jb51.net/file_images/article/201703/2017031709391425.png[/img] [list] [*]访问[url=]http://host:port/get[/url]来从代理池获取1个代理,如:'127.0.0.1:1080';[/*] [*]访问[url=]http://host:port/get/n[/url]来从代理池获取n个代理,如:"['127.0.0.1:1080', '127.0.0.1:443', '127.0.0.1:80']";[/*] [*]访问[url=]http://host:port/count[/url]来获取代理池的容量,如:'42'。[/*] [/list] 因为主页是一个静态的html页面,为避免每来一个访问主页的请求都要打开、读取以及关闭该html文件的开销,将其缓存到了redis中,通过html文件的修改时间来判断其是否被修改过,如果修改时间与redis缓存的修改时间不同,则认为html文件被修改了,则重新读取文件,并更新缓存,否则从redis中获取主页的内容。 返回代理是通过[code]aiohttp.web.Response(text=ip.decode('utf-8'))[/code]实现的,text要求str类型,而从redis中获取到的是bytes类型,需要进行转换。返回的多个代理,使用eval即可转换为list类型。 返回主页则不同,是通过[code]aiohttp.web.Response(body=main_page_cache, content_type='text/html') [/code],这里body要求的是bytes类型,直接将从redis获取的缓存返回即可,[code]conten_type='text/html'[/code]必不可少,否则无法通过浏览器加载主页,而是会将主页下载下来——在运行官方文档中的示例代码的时候也要注意这点,那些示例代码基本上都没有设置content_type。 这部分不复杂,注意上面提到的几点,而关于主页使用的静态资源文件的路径,可以参考之前的博客《aiohttp之添加静态资源路径》。 [b]4. 运行[/b] 将整个代理池的功能分成了3个独立的部分: [b]proxypool[/b] 定期检查代理池容量,若低于下限则启动代理爬虫并对代理检验,通过检验的爬虫放入代理池,达到规定的数量则停止爬虫。 [b]proxyvalidator[/b] 用于定期检验代理池中的代理,移除失效代理。 [b]proxyserver[/b] 启动server。 这3个独立的任务通过3个进程来运行,在Linux下可以使用supervisod来=管理这些进程,下面是supervisord的配置文件示例:
; supervisord.conf
[unix_http_server]
file=/tmp/supervisor.sock 

[inet_http_server]  
port=127.0.0.1:9001 

[supervisord]
logfile=/tmp/supervisord.log 
logfile_maxbytes=5MB 
logfile_backups=10  
loglevel=debug  
pidfile=/tmp/supervisord.pid 
nodaemon=false  
minfds=1024   
minprocs=200   

[rpcinterface:supervisor]
supervisor.rpcinterface_factory = supervisor.rpcinterface:make_main_rpcinterface

[supervisorctl]
serverurl=unix:///tmp/supervisor.sock

[program:proxyPool]
command=python /path/to/ProxyPool/run_proxypool.py  
redirect_stderr=true
stdout_logfile=NONE

[program:proxyValidator]
command=python /path/to/ProxyPool/run_proxyvalidator.py
redirect_stderr=true  
stdout_logfile=NONE

[program:proxyServer]
command=python /path/to/ProxyPool/run_proxyserver.py
autostart=false
redirect_stderr=true  
stdout_logfile=NONE
因为项目自身已经配置了日志,所以这里就不需要再用supervisord捕获stdout和stderr了。通过supervisord -c supervisord.conf启动supervisord,proxyPool和proxyServer则会随之自动启动,proxyServer需要手动启动,访问[url=http://127.0.0.1:9001/]http://127.0.0.1:9001[/url]即可通过网页来管理这3个进程了: [img]http://files.jb51.net/file_images/article/201703/2017031709391426.png[/img] supervisod的[url=http://supervisord.org/introduction.html#platform-requirements]官方文档[/url]说目前(版本3.3.1)不支持python3,但是我在使用过程中没有发现什么问题,可能也是由于我并没有使用supervisord的复杂功能,只是把它当作了一个简单的进程状态监控和启停工具了。 以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,同时也希望多多支持编程素材网!
  • 全部评论(0)
联系客服
客服电话:
400-000-3129
微信版

扫一扫进微信版
返回顶部