# 1nd: 两两交换
def insertion_sort(arr):
for i in range(1, len(arr)):
j = i
while j >= 0 and arr[j-1] > arr[j]:
arr[j], arr[j-1] = arr[j-1], arr[j]
j -= 1
return arr
# 2nd: 交换,最后处理没交换的
def insertion_sort2(arr):
for i in range(1, len(arr)):
j = i-1
key = arr[i]
while j >= 0 and arr[j] > key:
arr[j+1] = arr[j]
j -= 1
arr[j+1] = key
return arr
# 3nd: 加速版本,利用已经排好了序的进行二分查找
def insertion_sort3(seq):
for i in range(1, len(seq)):
key = seq[i]
# invariant: ``seq[:i]`` is sorted
# find the least `low' such that ``seq[low]`` is not less then `key'.
# Binary search in sorted sequence ``seq[low:up]``:
low, up = 0, i
while up > low:
middle = (low + up) // 2
if seq[middle] < key:
low = middle + 1
else:
up = middle
# insert key at position ``low``
seq[:] = seq[:low] + [key] + seq[low:i] + seq[i + 1:]
return seq
# 4nd: 原理同上,使用bisect
import bisect
def insertion_sort4(seq):
for i in range(1, len(seq)):
bisect.insort(seq, seq.pop(i), 0, i) # 默认插在相同元素的左边
return seq
# 1nd: for
def select_sort(seq):
for i in range(0, len(seq)):
mi = i
for j in range(i, len(seq)):
if seq[j] < seq[mi]:
mi = j
seq[mi], seq[i] = seq[i], seq[mi]
return seq
# 2nd: min
def select_sort2(seq):
for i, x in enumerate(seq):
mi = min(range(i, len(seq)), key=seq.__getitem__)
seq[i], seq[mi] = seq[mi], x
return seq
def bubble_sort(seq):
for i in range(len(seq)):
for j in range(len(seq)-1-i):
if seq[j] > seq[j+1]:
seq[j], seq[j+1] = seq[j+1], seq[j]
return seq
def bubble_sort2(seq):
for i in range(0, len(seq)):
for j in range(i + 1, len(seq)):
if seq[i] > seq[j]:
seq[i], seq[j] = seq[j], seq[i]
return seq
def quick_sort(seq):
if len(seq) >= 1:
pivot_idx = len(seq)//2
small, large = [], []
for i, val in enumerate(seq):
if i != pivot_idx:
if val <= seq[pivot_idx]:
small.append(val)
else:
large.append(val)
quick_sort(small)
quick_sort(large)
return small + [seq[pivot_idx]] + large
else:
return seq
# 1nd: 将两个有序数组合并到一个数组 def merge(left, right): i, j = 0, 0 result = [] while i < len(left) and j < len(right): if left[i] <= right[j]: result.append(left[i]) i += 1 else: result.append(right[j]) j += 1 result += left[i:] result += right[j:] return result def merge_sort(lists): if len(lists) <= 1: return lists num = len(lists) / 2 left = merge_sort(lists[:num]) right = merge_sort(lists[num:]) return merge(left, right) # 2nd: use merge from heapq import merge def merge_sort2(m): if len(m) <= 1: return m middle = len(m) // 2 left = m[:middle] right = m[middle:] left = merge_sort(left) right = merge_sort(right) return list(merge(left, right))
# 1nd: normal def swap(seq, i, j): seq[i], seq[j] = seq[j], seq[i] # 调整堆 def heapify(seq, end, i): l = 2 * i + 1 r = 2 * (i + 1) ma = i if l < end and seq[i] < seq[l]: ma = l if r < end and seq[ma] < seq[r]: ma = r if ma != i: swap(seq, i, ma) heapify(seq, end, ma) def heap_sort(seq): end = len(seq) start = end // 2 - 1 # 创建堆 for i in range(start, -1, -1): heapify(seq, end, i) for i in range(end - 1, 0, -1): swap(seq, i, 0) heapify(seq, i, 0) return seq # 2nd: use heapq import heapq def heap_sort2(seq): """ Implementation of heap sort """ heapq.heapify(seq) return [heapq.heappop(seq) for _ in range(len(seq))]
def shell_sort(seq): count = len(seq) step = 2 group = count // step while group > 0: for i in range(0, group): j = i + group while j < count: k = j - group key = seq[j] while k >= 0: if seq[k] > key: seq[k + group] = seq[k] seq[k] = key k -= group j += group group //= step return seq
机械节能产品生产企业官网模板...
大气智能家居家具装修装饰类企业通用网站模板...
礼品公司网站模板
宽屏简约大气婚纱摄影影楼模板...
蓝白WAP手机综合医院类整站源码(独立后台)...苏ICP备2024110244号-2 苏公网安备32050702011978号 增值电信业务经营许可证编号:苏B2-20251499 | Copyright 2018 - 2025 源码网商城 (www.ymwmall.com) 版权所有