源码网商城,靠谱的源码在线交易网站 我的订单 购物车 帮助

源码网商城

使用C#实现RTP数据包传输 参照RFC3550

  • 时间:2021-07-18 11:02 编辑: 来源: 阅读:
  • 扫一扫,手机访问
摘要:使用C#实现RTP数据包传输 参照RFC3550
闲暇时折腾IP网络视频监控系统,需要支持视频帧数据包在网络内的传输。 未采用H.264或MPEG4等编码压缩方式,直接使用Bitmap图片。 由于对帧的准确到达要求不好,所以采用UDP传输。如果发生网络丢包现象则直接将帧丢弃。 为了记录数据包的传输顺序和帧的时间戳,所以研究了下RFC3550协议,采用RTP包封装视频帧。 并未全面深究,所以未使用SSRC和CSRC,因为不确切了解其用意。不过目前的实现情况已经足够了。
[u]复制代码[/u] 代码如下:
/// <summary>    /// RTP(RFC3550)协议数据包    /// </summary>    /// <remarks>    /// The RTP header has the following format:    ///  0                   1                   2                   3    ///  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1    /// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    /// |V=2|P|X| CC    |M| PT          | sequence number               |    /// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    /// | timestamp                                                     |    /// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    /// | synchronization source (SSRC) identifier                      |    /// +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+    /// | contributing source (CSRC) identifiers                        |    /// | ....                                                          |    /// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    /// </remarks>    public class RtpPacket    {      /// <summary>      /// version (V): 2 bits      /// RTP版本标识,当前规范定义值为2.      /// This field identifies the version of RTP. The version defined by this specification is two (2).      /// (The value 1 is used by the first draft version of RTP and the value 0 is used by the protocol      /// initially implemented in the \vat" audio tool.)      /// </summary>      public int Version { get { return 2; } }      /// <summary>      /// padding (P):1 bit      /// 如果设定padding,在报文的末端就会包含一个或者多个padding 字节,这不属于payload。      /// 最后一个字节的padding 有一个计数器,标识需要忽略多少个padding 字节(包括自己)。      /// 一些加密算法可能需要固定块长度的padding,或者是为了在更低层数据单元中携带一些RTP 报文。      /// If the padding bit is set, the packet contains one or more additional padding octets at the      /// end which are not part of the payload. The last octet of the padding contains a count of      /// how many padding octets should be ignored, including itself. Padding may be needed by      /// some encryption algorithms with fixed block sizes or for carrying several RTP packets in a      /// lower-layer protocol data unit.      /// </summary>      public int Padding { get { return 0; } }      /// <summary>      /// extension (X):1 bit      /// 如果设定了extension 位,定长头字段后面会有一个头扩展。      /// If the extension bit is set, the fixed header must be followed by exactly one header extensio.      /// </summary>      public int Extension { get { return 0; } }      /// <summary>      /// CSRC count (CC):4 bits      /// CSRC count 标识了定长头字段中包含的CSRC identifier 的数量。      /// The CSRC count contains the number of CSRC identifiers that follow the fixed header.      /// </summary>      public int CC { get { return 0; } }      /// <summary>      /// marker (M):1 bit      /// marker 是由一个profile 定义的。用来允许标识在像报文流中界定帧界等的事件。      /// 一个profile 可能定义了附加的标识位或者通过修改payload type 域中的位数量来指定没有标识位.      /// The interpretation of the marker is defined by a profile. It is intended to allow significant      /// events such as frame boundaries to be marked in the packet stream. A profile may define      /// additional marker bits or specify that there is no marker bit by changing the number of bits      /// in the payload type field.      /// </summary>      public int Marker { get { return 0; } }      /// <summary>      /// payload type (PT):7 bits      /// 这个字段定一个RTPpayload 的格式和在应用中定义解释。      /// profile 可能指定一个从payload type 码字到payload format 的默认静态映射。      /// 也可以通过non-RTP 方法来定义附加的payload type 码字(见第3 章)。      /// 在 RFC 3551[1]中定义了一系列的默认音视频映射。      /// 一个RTP 源有可能在会话中改变payload type,但是这个域在复用独立的媒体时是不同的。(见5.2 节)。      /// 接收者必须忽略它不识别的payload type。      /// This field identifies the format of the RTP payload and determines its interpretation by the      /// application. A profile may specify a default static mapping of payload type codes to payload      /// formats. Additional payload type codes may be defined dynamically through non-RTP means      /// (see Section 3). A set of default mappings for audio and video is specified in the companion      /// RFC 3551 [1]. An RTP source may change the payload type during a session, but this field      /// should not be used for multiplexing separate media streams (see Section 5.2).      /// A receiver must ignore packets with payload types that it does not understand.      /// </summary>      public RtpPayloadType PayloadType { get; private set; }      /// <summary>      /// sequence number:16 bits      /// 每发送一个RTP 数据报文序列号值加一,接收者也可用来检测丢失的包或者重建报文序列。      /// 初始的值是随机的,这样就使得known-plaintext 攻击更加困难, 即使源并没有加密(见9。1),      /// 因为要通过的translator 会做这些事情。关于选择随机数方面的技术见[17]。      /// The sequence number increments by one for each RTP data packet sent, and may be used      /// by the receiver to detect packet loss and to restore packet sequence. The initial value of the      /// sequence number should be random (unpredictable) to make known-plaintext attacks on      /// encryption more dificult, even if the source itself does not encrypt according to the method      /// in Section 9.1, because the packets may flow through a translator that does. Techniques for      /// choosing unpredictable numbers are discussed in [17].      /// </summary>      public int SequenceNumber { get; private set; }      /// <summary>      /// timestamp:32 bits      /// timestamp 反映的是RTP 数据报文中的第一个字段的采样时刻的时间瞬时值。      /// 采样时间值必须是从恒定的和线性的时间中得到以便于同步和jitter 计算(见第6.4.1 节)。      /// 必须保证同步和测量保温jitter 到来所需要的时间精度(一帧一个tick 一般情况下是不够的)。      /// 时钟频率是与payload 所携带的数据格式有关的,在profile 中静态的定义或是在定义格式的payload format 中,      /// 或通过non-RTP 方法所定义的payload format 中动态的定义。如果RTP 报文周期的生成,就采用虚拟的(nominal)      /// 采样时钟而不是从系统时钟读数。例如,在固定比特率的音频中,timestamp 时钟会在每个采样周期时加一。      /// 如果音频应用中从输入设备中读入160 个采样周期的块,the timestamp 就会每一块增加160,      /// 而不管块是否传输了或是丢弃了。      /// 对于序列号来说,timestamp 初始值是随机的。只要它们是同时(逻辑上)同时生成的,      /// 这些连续的的 RTP 报文就会有相同的timestamp,      /// 例如,同属一个视频帧。正像在MPEG 中内插视频帧一样,      /// 连续的但不是按顺序发送的RTP 报文可能含有相同的timestamp。      /// The timestamp reflects the sampling instant of the first octet in the RTP data packet. The      /// sampling instant must be derived from a clock that increments monotonically and linearly      /// in time to allow synchronization and jitter calculations (see Section 6.4.1). The resolution      /// of the clock must be suficient for the desired synchronization accuracy and for measuring      /// packet arrival jitter (one tick per video frame is typically not suficient). The clock frequency      /// is dependent on the format of data carried as payload and is specified statically in the profile      /// or payload format specification that defines the format, or may be specified dynamically for      /// payload formats defined through non-RTP means. If RTP packets are generated periodically,      /// the nominal sampling instant as determined from the sampling clock is to be used, not a      /// reading of the system clock. As an example, for fixed-rate audio the timestamp clock would      /// likely increment by one for each sampling period. If an audio application reads blocks covering      /// 160 sampling periods from the input device, the timestamp would be increased by 160 for      /// each such block, regardless of whether the block is transmitted in a packet or dropped as silent.      /// </summary>      public long Timestamp { get; private set; }      /// <summary>      /// SSRC:32 bits      /// SSRC 域识别同步源。为了防止在一个会话中有相同的同步源有相同的SSRC identifier,      /// 这个identifier 必须随机选取。      /// 生成随机 identifier 的算法见目录A.6 。虽然选择相同的identifier 概率很小,      /// 但是所有的RTP implementation 必须检测和解决冲突。      /// 第8 章描述了冲突的概率和解决机制和RTP 级的检测机制,根据唯一的 SSRCidentifier 前向循环。      /// 如果有源改变了它的源传输地址,      /// 就必须为它选择一个新的SSRCidentifier 来避免被识别为循环过的源(见第8.2 节)。      /// The SSRC field identifies the synchronization source. This identifier should be chosen      /// randomly, with the intent that no two synchronization sources within the same RTP session      /// will have the same SSRC identifier. An example algorithm for generating a random identifier      /// is presented in Appendix A.6. Although the probability of multiple sources choosing the same      /// identifier is low, all RTP implementations must be prepared to detect and resolve collisions.      /// Section 8 describes the probability of collision along with a mechanism for resolving collisions      /// and detecting RTP-level forwarding loops based on the uniqueness of the SSRC identifier. If      /// a source changes its source transport address, it must also choose a new SSRC identifier to      /// avoid being interpreted as a looped source (see Section 8.2).      /// </summary>      public int SSRC { get { return 0; } }      /// <summary>      /// 每一个RTP包中都有前12个字节定长的头字段      /// The first twelve octets are present in every RTP packet      /// </summary>      public const int HeaderSize = 12;      /// <summary>      /// RTP消息头      /// </summary>      private byte[] _header;      /// <summary>      /// RTP消息头      /// </summary>      public byte[] Header { get { return _header; } }      /// <summary>      /// RTP有效载荷长度      /// </summary>      private int _payloadSize;      /// <summary>      /// RTP有效载荷长度      /// </summary>      public int PayloadSize { get { return _payloadSize; } }      /// <summary>      /// RTP有效载荷      /// </summary>      private byte[] _payload;      /// <summary>      /// RTP有效载荷      /// </summary>      public byte[] Payload { get { return _payload; } }      /// <summary>      /// RTP消息总长度,包括Header和Payload      /// </summary>      public int Length { get { return HeaderSize + PayloadSize; } }      /// <summary>      /// RTP(RFC3550)协议数据包      /// </summary>      /// <param name="playloadType">数据报文有效载荷类型</param>      /// <param name="sequenceNumber">数据报文序列号值</param>      /// <param name="timestamp">数据报文采样时刻</param>      /// <param name="data">数据</param>      /// <param name="dataSize">数据长度</param>      public RtpPacket(        RtpPayloadType playloadType,        int sequenceNumber,        long timestamp,        byte[] data,        int dataSize)      {        // fill changing header fields        SequenceNumber = sequenceNumber;        Timestamp = timestamp;        PayloadType = playloadType;        // build the header bistream        _header = new byte[HeaderSize];        // fill the header array of byte with RTP header fields        _header[0] = (byte)((Version << 6) | (Padding << 5) | (Extension << 4) | CC);        _header[1] = (byte)((Marker << 7) | (int)PayloadType);        _header[2] = (byte)(SequenceNumber >> 8);        _header[3] = (byte)(SequenceNumber);        for (int i = 0; i < 4; i++)        {          _header[7 - i] = (byte)(Timestamp >> (8 * i));        }        for (int i = 0; i < 4; i++)        {          _header[11 - i] = (byte)(SSRC >> (8 * i));        }        // fill the payload bitstream        _payload = new byte[dataSize];        _payloadSize = dataSize;        // fill payload array of byte from data (given in parameter of the constructor)        Array.Copy(data, 0, _payload, 0, dataSize);      }      /// <summary>      /// RTP(RFC3550)协议数据包      /// </summary>      /// <param name="playloadType">数据报文有效载荷类型</param>      /// <param name="sequenceNumber">数据报文序列号值</param>      /// <param name="timestamp">数据报文采样时刻</param>      /// <param name="frame">图片</param>      public RtpPacket(        RtpPayloadType playloadType,        int sequenceNumber,        long timestamp,        Image frame)      {        // fill changing header fields        SequenceNumber = sequenceNumber;        Timestamp = timestamp;        PayloadType = playloadType;        // build the header bistream        _header = new byte[HeaderSize];        // fill the header array of byte with RTP header fields        _header[0] = (byte)((Version << 6) | (Padding << 5) | (Extension << 4) | CC);        _header[1] = (byte)((Marker << 7) | (int)PayloadType);        _header[2] = (byte)(SequenceNumber >> 8);        _header[3] = (byte)(SequenceNumber);        for (int i = 0; i < 4; i++)        {          _header[7 - i] = (byte)(Timestamp >> (8 * i));        }        for (int i = 0; i < 4; i++)        {          _header[11 - i] = (byte)(SSRC >> (8 * i));        }        // fill the payload bitstream        using (MemoryStream ms = new MemoryStream())        {          frame.Save(ms, ImageFormat.Jpeg);          _payload = ms.ToArray();          _payloadSize = _payload.Length;        }      }      /// <summary>      /// RTP(RFC3550)协议数据包      /// </summary>      /// <param name="packet">数据包</param>      /// <param name="packetSize">数据包长度</param>      public RtpPacket(byte[] packet, int packetSize)      {        //check if total packet size is lower than the header size        if (packetSize >= HeaderSize)        {          //get the header bitsream          _header = new byte[HeaderSize];          for (int i = 0; i < HeaderSize; i++)          {            _header[i] = packet[i];          }          //get the payload bitstream          _payloadSize = packetSize - HeaderSize;          _payload = new byte[_payloadSize];          for (int i = HeaderSize; i < packetSize; i++)          {            _payload[i - HeaderSize] = packet[i];          }          //interpret the changing fields of the header          PayloadType = (RtpPayloadType)(_header[1] & 127);          SequenceNumber = UnsignedInt(_header[3]) + 256 * UnsignedInt(_header[2]);          Timestamp = UnsignedInt(_header[7])            + 256 * UnsignedInt(_header[6])            + 65536 * UnsignedInt(_header[5])            + 16777216 * UnsignedInt(_header[4]);        }      }      /// <summary>      /// 将消息转换成byte数组      /// </summary>      /// <returns>消息byte数组</returns>      public byte[] ToArray()      {        byte[] packet = new byte[Length];        Array.Copy(_header, 0, packet, 0, HeaderSize);        Array.Copy(_payload, 0, packet, HeaderSize, PayloadSize);        return packet;      }      /// <summary>      /// 将消息体转换成图片      /// </summary>      /// <returns>图片</returns>      public Bitmap ToBitmap()      {        return new Bitmap(new MemoryStream(_payload));      }      /// <summary>      /// 将消息体转换成图片      /// </summary>      /// <returns>图片</returns>      public Image ToImage()      {        return Image.FromStream(new MemoryStream(_payload));      }      /// <summary>      /// 将图片转换成消息      /// </summary>      /// <param name="playloadType">数据报文有效载荷类型</param>      /// <param name="sequenceNumber">数据报文序列号值</param>      /// <param name="timestamp">数据报文采样时刻</param>      /// <param name="frame">图片帧</param>      /// <returns>      /// RTP消息      /// </returns>      public static RtpPacket FromImage(        RtpPayloadType playloadType,        int sequenceNumber,        long timestamp,        Image frame)      {        return new RtpPacket(playloadType, sequenceNumber, timestamp, frame);      }      /// <summary>      /// return the unsigned value of 8-bit integer nb      /// </summary>      /// <param name="nb"></param>      /// <returns></returns>      private static int UnsignedInt(int nb)      {        if (nb >= 0)          return (nb);        else          return (256 + nb);      }    }
  • 全部评论(0)
联系客服
客服电话:
400-000-3129
微信版

扫一扫进微信版
返回顶部