源码网商城,靠谱的源码在线交易网站 我的订单 购物车 帮助

源码网商城

Java常用排序算法及性能测试集合

  • 时间:2020-12-01 14:21 编辑: 来源: 阅读:
  • 扫一扫,手机访问
摘要:Java常用排序算法及性能测试集合
现在再回过头理解,结合自己的体会, 选用最佳的方式描述这些算法,以方便理解它们的工作原理和程序设计技巧。本文适合做java面试准备的材料阅读。 先附上一个测试报告: Array length: 20000 bubbleSort : 766 ms bubbleSortAdvanced : 662 ms bubbleSortAdvanced2 : 647 ms selectSort : 252 ms insertSort : 218 ms insertSortAdvanced : 127 ms insertSortAdvanced2 : 191 ms binaryTreeSort : 3 ms shellSort : 2 ms shellSortAdvanced : 2 ms shellSortAdvanced2 : 1 ms mergeSort : 3 ms quickSort : 1 ms heapSort : 2 ms 通过测试,可以认为,冒泡排序完全有理由扔进垃圾桶。它存在的唯一理由可能是最好理解。希尔排序的高效性是我没有想到的;堆排序比较难理解和编写,要有宏观的思维。
[u]复制代码[/u] 代码如下:
package algorithm.sort; import java.lang.reflect.Method; import java.util.Arrays; import java.util.Date; /**  * Java常用排序算法及性能测试集合  *  * 本程序集合涵盖常用排序算法的编写,并在注释中配合极其简单的特例讲解了各种算法的工作原理,以方便理解和吸收;  * 程序编写过程中吸收了很多维基百科和别人blog上面的例子,并结合自己的思考,选择并改进一个最容易让人理解的写法  *(尤其是快速排序,我觉得我写的算法最好理解)。  * 同时包含一个集中式的性能测试和正确性测试方法,方便观测。  * @author /link.php?url=http://blog.csdn.net/sunxing007  * 转载请注明来自/link.php?url=http://blog.csdn.net/sunxing007  */ public class SortUtil {  // 被测试的方法集合  static String[] methodNames = new String[]{   "bubbleSort",   "bubbleSortAdvanced",   "bubbleSortAdvanced2",   "selectSort",   "insertSort",   "insertSortAdvanced",   "insertSortAdvanced2",   "binaryTreeSort",   "shellSort",   "shellSortAdvanced",   "shellSortAdvanced2",   "mergeSort",   "quickSort",   "heapSort"  };     public static void main(String[] args) throws Exception{      //correctnessTest();      performanceTest(20000);     }     /**      * 正确性测试<br>      * 简单地测试一下各个算法的正确性<br>      * 只是为了方便观测新添加的算法是否基本正确;<br>      * @throws Exception 主要是反射相关的Exception;<br>      */     public static void correctnessTest() throws Exception{      int len = 10;      int[] a = new int[len];      for(int i=0; i<methodNames.length; i++){       for(int j=0; j<a.length; j++){           a[j] = (int)Math.floor(Math.random()*len*2);          }       Method sortMethod = null;       sortMethod = SortUtil.class.getDeclaredMethod(methodNames[i], a.getClass());       Object o = sortMethod.invoke(null, a);       System.out.print(methodNames[i] + " : ");       if(o==null){        System.out.println(Arrays.toString(a));       }       else{        //兼顾mergeSort,它的排序结果以返回值的形式出现;        System.out.println(Arrays.toString((int[])o));       }      }     }     /**      * 性能测试<br>      * 数组长度用参数len传入,每个方法跑20遍取耗时平均值;<br>      * @param len 数组长度 建议取10000以上,否则有些算法会显示耗时为0;<br>      * @throws Exception 主要是反射相关的Exception;<br>      */     public static void performanceTest(int len) throws Exception{      int[] a = new int[len];      int times = 20;      System.out.println("Array length: " + a.length);      for(int i=0; i<methodNames.length; i++){       Method sortMethod = null;       sortMethod = SortUtil.class.getDeclaredMethod(methodNames[i], a.getClass());       int totalTime = 0;       for(int j=0; j<times; j++){        for(int k=0; k<len; k++){            a[k] = (int)Math.floor(Math.random()*20000);           }        long start = new Date().getTime();        sortMethod.invoke(null, a);        long end = new Date().getTime();        totalTime +=(end-start);       }       System.out.println(methodNames[i] + " : " + (totalTime/times) + " ms");       //System.out.println(Arrays.toString(a));      }     }     /**      * 最原始的冒泡交换排序;<br>      * 两层遍历,外层控制扫描的次数,内层控制比较的次数;<br>      * 外层每扫描一次,就有一个最大的元素沉底;所以内层的比较次数将逐渐减小;<br>      */     public static void bubbleSort(int[] a){         for(int i=0; i<a.length; i++){             for(int j=0; j<a.length-i-1; j++){                 if(a[j]>a[j+1]){                     int tmp = a[j];                     a[j] = a[j+1];                     a[j+1] = tmp;                 }             }         }     }     /**      * 改进的冒泡法<br>      * 改进之处在于:设一个标志位,如果某趟跑下来,没有发生交换,说明已经排好了;<br>      */     public static void bubbleSortAdvanced(int[] a){         int k = a.length-1;         boolean flag = true;         while(flag){             flag = false;             for(int i=0;i<k;i++){                 if(a[i]>a[i+1]){                     int tmp = a[i];                     a[i] = a[i+1];                     a[i+1] = tmp;                     //有交换则继续保持标志位;                     flag = true;                 }             }             k--;         }     }     /**      * 改进的冒泡法2<br>      * 改进之处在于吸收上面的思想(没有交换意味着已经有序),如果局部的已经是有序的,则后续的比较就不需要再比较他们了。<br>      * 比如:3142 5678,假如刚刚做完了2和4交换之后,发现这趟比较后续再也没有发生交换,则后续的比较只需要比到4即可;<br>      * 该算法就是用一个标志位记录某趟最后发生比较的地点;<br>      */     public static void bubbleSortAdvanced2(int[] a){         int flag = a.length - 1;         int k;         while(flag>0){             k = flag;             flag = 0;             for(int i=0; i<k; i++){                 if(a[i] > a[i+1]){                     int tmp = a[i];                     a[i] = a[i+1];                     a[i+1] = tmp;                     //有交换则记录该趟最后发生比较的地点;                     flag = i+1;                 }             }         }     }     /**      * 插入排序      *      * 关于插入排序,这里有几个约定,从而可以快速理解算法:<br>      * i: 无序表遍历下标;i<n-1;<br>      * j: 有序表遍历下表;0<=j<i;<br>      * a[i]:表示当前被拿出来做插入排序的无序表头元素;<br>      * a[j]:有序表中的任意元素;<br>      * <br>      * 算法关键点:把数组分割为a[0~i-1]有序表,a[i~n-1]无序表;每次从无序表头部取一个,<br>      * 把它插入到有序表适当的位置,直到无序表为空;<br>      * 初始时,a[0]为有序表,a[1~n-1]为无序表;<br>      */     public static void insertSort(int[] a){         //从无序表头开始遍历;         for(int i=1; i<a.length; i++){             int j;             //拿a[i]和有序表元素依次比较,找到一个恰当的位置;             for(j=i-1;j>=0; j--){                 if(a[j] < a[i]){                     break;                 }             }             //如果找到恰当的位置,则从该位置开始,把元素朝后移动一格,为插入的元素腾出空间;             if(j!=(i-1)){                 int tmp = a[i];                 int k;                 for(k = i-1; k>j;k--){                     a[k+1] = a[k];                 }                 a[k+1] = tmp;             }         }     }     /**      * 改进的插入排序1      * 改进的关键在于:首先拿无序表头元素a[i]和有序表尾a[i-1]比较,      * 如果a[i]<a[i-1],说明需要调整;调整的过程为:      * 从有序表尾开始,把有序表里面比a[i]大的元素都朝后移动,直到找到恰当的位置;      */     public static void insertSortAdvanced(int[] a){         //遍历无序表;         for(int i=1; i<a.length; i++){             //如果无序表头元素小于有序表尾,说明需要调整;             if(a[i]<a[i-1]){                 int tmp = a[i];                 int j;                 //从有序表尾朝前搜索并比较,并把大于a[i]的元素朝后移动以腾出空间;                 for(j=i-1; j>=0&&a[j]>tmp;j--){                     a[j+1] = a[j];                 }                 a[j+1] = tmp;             }         }     }     /**      * 改进的插入排序2      * 总体思想和上面相似,拿无序表头元素从有序表尾元素开始朝前比较,      * 如果a[i]比a[i-1]小,则把a[i]从有序表尾用冒泡交换的方式朝前移动,直到到达恰当的位置;      */     public static void insertSortAdvanced2(int[] a){         //遍历无序表         for(int i=1; i<a.length; i++){             //拿a[i]从有序表尾开始冒泡;             for(int j=i-1; j>=0 && a[j] > a[j+1]; j--){//a[j+1]就是a[i]                 int tmp = a[j];                 a[j] = a[j+1];                 a[j+1] = tmp;             }         }     }     /**      * 快速排序<br>      * 算法的思想在于分而治之:先找一个元素(一般来说都是数组头元素),把比它大的都放到右边,把比它小的都放到左边;<br>      * 然后再按照这样的思想去处理两个子数组; 下面说的子数组头元素通指用来划分数组的元素;<br>      * <br>      * 下面程序关键点就在于!forward, low0++, high0--这些运算; 这三个运算使得a[low0],a[high0]里面总有一个指向子数组头元素; <br>        * 可以用极端的情况来方便理解这三个值的运作: <br>      * 假如我的数列为0123456789, 初始时forward=false,0作为子数组划分依据,很显然第一轮的时候不会发生任何交换,low0一直指向0,<br>      * high0逐渐下降直到它指向0为止; 同理可思考9876543210这个例子;<br>      * <br>      * @param a 待排序数组<br>      * @param low 子数组开始的下标;<br>      * @param high 子数组结束的下标;<br>      */     public static void quickSort(int[] a, int low, int high){         if(low>=high){             return;         }         int low0 = low;         int high0 = high;         boolean forward = false;         while(low0!=high0){             if(a[low0]>a[high0]){                 int tmp = a[low0];                 a[low0] = a[high0];                 a[high0] = tmp;                 forward = !forward;             }             if(forward){                 low0++;             }             else{                 high0--;             }         }         low0--;         high0++;         quickSort(a, low, low0);         quickSort(a, high0, high);     }     /**      * 快速排序的简单调用形式<br>      * 方便测试和调用<br>      * @param a      */     public static void quickSort(int[] a){      quickSort(a, 0, a.length-1);     }     /**      * 归并排序<br>      * 所谓归并,就是合并两个有序数组;归并排序也用了分而治之的思想,把一个数组分为若干个子数组;<br>      * 当子数组的长度为1的时候,则子数组是有序的,于是就可以两两归并了;<br>      * <br>      * 由于归并排序需要分配空间来转储归并的结果,为了算法上的方便,归并算法的结果以返回值的形式出现;<br>      */     /**      * 合并两个有序数组      * @param a 有序数组1      * @param b 有序数组2      * @return 合并之后的有序数组;      */     public static int[] merge(int[] a, int[] b){      int result[] = new int[a.length+b.length];      int i=0,j=0,k=0;      while(i<a.length&&j<b.length){       if(a[i]<b[j]){        result[k++] = a[i];        i++;       }       else{        result[k++] = b[j];        j++;       }      }      while(i<a.length){       result[k++] = a[i++];      }      while(j<b.length){       result[k++] = b[j++];      }      return result;     }     /**      * 归并排序<br>      * 把数组从中间一分为二,并对左右两部分递归调用,直到数组长度为1的时候,开始两两归并;<br>      * @param 待排序数组;      * @return 有序数组;      */     public static int[] mergeSort(int[] a){      if(a.length==1){       return a;      }      int mid = a.length/2;      int[] leftPart = new int[mid];      int[] rightPart = new int[a.length-mid];      System.arraycopy(a, 0, leftPart, 0, leftPart.length);      System.arraycopy(a, mid, rightPart, 0, rightPart.length);      leftPart = mergeSort(leftPart);      rightPart = mergeSort(rightPart);      return merge(leftPart, rightPart);     }     /**      * 选择排序<br>      * 和插入排序类似,它也把数组分割为有序区和无序区,所不同的是:<br>      * 插入排序是拿无序区的首元素插入到有序区适当的位置,而<br>      * 选择排序是从无序区中挑选最小的放到有序区最后;<br>      * <br>      * 两层循环,外层控制有序区的队尾,内层用来查找无序区最小元素;<br>      * @param a      */     public static void selectSort(int[] a){      for(int i=0; i<a.length; i++){       int minIndex = i;       for(int j=i+1; j<a.length; j++){        if(a[j]<a[minIndex]){         minIndex = j;        }       }       int tmp = a[i];       a[i] = a[minIndex];       a[minIndex]= tmp;      }     }     /**      * 希尔排序<br>      * 其思想是把数组按等步长(/间距)划分为多个子序列,对各个子序列做普通的插入排序,<br>逐次降低步长,直到为1的时候最后再做一次普通的插入排序;      * 用一个极端的例子作比方,我有数列如下:<br>      * [1,2,3,4,5,6,7,8,9,10];<br>      * 初始的时候,步长gap=5;则划分的子数组为[1,6], [2,7], [3,8], [4,9], [5,10];<br>对他们分别排序(当然由于本数组特殊,所以结果是不变的);<br>      * 然后gap=2=5/2; 子数组为[1,3,5,7,9], [2,4,6,8,10]; <br>      * 最后gap=1=2/2; 做一次全局排序;<br>      * <br>      * 希尔排序克服了插入/冒泡排序的弱点(一次只能把元素移动一个相邻的位置), <br>依靠大步长,可以把元素尽快移动到目标位置(或附近);<br>      * 希尔排序实际上是插入排序的变种。它适用于:当数组总体有序,个别需要调整的情况;这时候利用插入排序的优势,可以达到O(n)的效率;<br>      * 影响希尔算法的一个重要的因素是步长选择,一个好步长的优点是:后面的短步长排序不会破坏前面的长步长排序;<br>      * 怎么理解这种破坏呢?前面的长步长把一个较小的数移到了左面,但是在缩小步长之后有可能又被交换到了右面 (因为它被分到了一个有很多比它更小的组);<br>      * 关于步长,可以查看http://zh.wikipedia.org上面关于希尔排序的页面;<br>      * 下面的程序是希尔排序最基础的写法,适合用来理解希尔排序思想;<br>      */     public static void shellSort(int[] a){      // 控制间距;间距逐渐减小,直到为1;      for(int gap = a.length/2; gap>0; gap/=2){       // 扫描每个子数组       for(int i=0; i<gap; i++){        // 对每个字数组,扫描无序区;注意增量;        // a[i]是初始有序区;        for(int j=i+gap; j<a.length; j+=gap){         // 无序区首元素小于有序区尾元素,说明需要调整         if(a[j]<a[j-gap]){          int tmp = a[j];          int k = j-gap;          //从有序区尾向前搜索查找适当的位置;          while(k>=0&&a[k]>tmp){           a[k+gap] = a[k];           k-=gap;          }          a[k+gap] = tmp;         }        }       }      }     }     /**      * 改进的希尔排序<br>      * 改进之处在于:上面的写法用一个for循环来区别对待每个字数组;而实际上是不必要的;<br>      * a[0,1,...gap-1]作为所有子数组的有序区,a[gap,...n-1]作为所有字数组的无序区;<br>      * <br>      * 该改进在时间效率上没有改进;只是让程序看起来更简洁;<br>      * @param a      */     public static void shellSortAdvanced(int[] a){      // 控制步长      for(int gap = a.length/2; gap>0; gap/=2){       // 从无序区开始处理,把多个子数组放在一起处理;       for(int j=gap; j<a.length; j++){        // 下面的逻辑和上面是一样的;        if(a[j]<a[j-gap]){         int tmp = a[j];         int k = j-gap;         while(k>=0&&a[k]>tmp){          a[k+gap] = a[k];          k-=gap;         }         a[k+gap] = tmp;        }       }      }     }     /**      * 改进的希尔排序2<br>      * 在吸收shellSortAdvanced思想的基础上,采用insertAdvanced2的做法;<br>即无序区首元素通过朝前冒泡的形式移动的适当的位置;<br>      * @param a      */     public static void shellSortAdvanced2(int[] a){      for(int gap = a.length/2; gap>0; gap/=2){       for(int i=gap; i<a.length; i++){        if(a[i]<a[i-gap]){         for(int j=i-gap; j>=0&&a[j+gap]>a[j]; j-=gap){          int tmp = a[j];          a[j] = a[j+gap];          a[j+gap] = tmp;         }        }       }      }     }     /**      * 堆排序<br>      * 堆的定义:堆是一个完全,或近似完全的二叉树,堆顶元素的值大于左右孩子的值,左右孩子也需要满足这个条件;<br>      * 按照堆的定义,堆可以是大顶堆(maxHeap),或小顶堆(minHeap);<br>      * 一般用数组即可模拟二叉树,对于任意元素i,左孩子为2*i+1,右孩子为2*i+2;父节点为(i-1)/2;      * @param a      */     public static void heapSort(int[] a){      // 先从最后一个非叶子节点往上调整,使满足堆结构;      for(int i=(a.length-2)/2; i>=0; i--){       maxHeapAdjust(a, i, a.length);      }      // 每次拿最后一个节点和第一个交换,然后调整堆;直到堆顶;      for(int i=a.length-1; i>0; i--){       int tmp = a[i]; a[i] = a[0]; a[0] = tmp;       maxHeapAdjust(a, 0, i);      }     }     /**      * 调整堆<br>      * 把以i为跟节点的二叉树调整为堆;<br>      * 可以这么来思考这个过程:这个完全二叉树就像一个金字塔,塔顶的小元素沿着树结构,往下沉降;<br>      * 调整的结果是最大的元素在金字塔顶,然后把它从堆中删除(把它交换到堆尾,然后堆收缩一格);<br>      * 堆排序快的原因就是根据二叉树的特点,一个节点要沉降到合适的位置,只需要logn步;同时前期调整的结果(大小顺序)会被记录下来,从而加快后续的调整;<br>      * @param a 待排数组      * @param i 堆顶      * @param len 堆长度      */     public static void maxHeapAdjust(int[] a, int i, int len){      int tmp = a[i];      // j是左孩子节点      int j = i*2+1;      //      while(j<len){       // 从左右孩子中挑选大的       // j+1是右孩子节点       if((j+1)<len && a[j+1]>a[j]){        j++;       }       // 找到恰当的位置就不再找       if(a[j]<tmp){        break;       }       // 否则把较大者沿着树往上移动;       a[i] = a[j];       // i指向刚才的较大的孩子;       i = j;       // j指向新的左孩子节点;       j = 2*i + 1;      }      // 把要调整的节点值下沉到适当的位置;      a[i] = tmp;     }     /**      * 二叉树排序<br>      * 二叉树的定义是嵌套的:<br>节点的值大于左叶子节点的值,小于右叶子节点的值;叶子节点同样满足这个要求;<br>      * 二叉树的构造过程就是排序的过程:<br>      * 先构造跟节点,然后调用add方法添加后续节点为跟节点的子孙节点;这个过程也是嵌套的;<br>      * <br>      * 中序遍历二叉树即得到有序结果;<br>      * 二叉树排序用法特殊,使用情形要视情况而定;<br>      * @param a      */     public static void binaryTreeSort(int[] a){      // 构造一个二叉树节点内部类来实现二叉树排序算法;      class BinaryNode{       int value;       BinaryNode left;       BinaryNode right;       public BinaryNode(int value){        this.value = value;        this.left = null;        this.right = null;       }       public void add(int value){        if(value>this.value){         if(this.right!=null){          this.right.add(value);         }         else{          this.right = new BinaryNode(value);         }        }        else{         if(this.left!=null){          this.left.add(value);         }         else{          this.left = new BinaryNode(value);         }        }       }       /**        * 按中序遍历二叉树,就是有序的。        */       public void iterate(){        if(this.left!=null){         this.left.iterate();        }        // 在测试的时候要把输出关掉,以免影响性能;        // System.out.print(value + ", ");        if(this.right!=null){         this.right.iterate();        }       }      }      BinaryNode root = new BinaryNode(a[0]);      for(int i=1; i<a.length; i++){       root.add(a[i]);      }      root.iterate();     } }
  • 全部评论(0)
联系客服
客服电话:
400-000-3129
微信版

扫一扫进微信版
返回顶部