sklearn.preprocessing.scale(X)
scaler = sklearn.preprocessing.StandardScaler().fit(train) scaler.transform(train) scaler.transform(test)
min_max_scaler = sklearn.preprocessing.MinMaxScaler() min_max_scaler.fit_transform(X_train)
X = [[ 1, -1, 2],[ 2, 0, 0], [ 0, 1, -1]] sklearn.preprocessing.normalize(X, norm='l2')
array([[ 0.40, -0.40, 0.81], [ 1, 0, 0], [ 0, 0.70, -0.70]])
binarizer = sklearn.preprocessing.Binarizer(threshold=1.1) binarizer.transform(X)
lb = sklearn.preprocessing.LabelBinarizer()
enc = preprocessing.OneHotEncoder() enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]]) enc.transform([[0, 1, 3]]).toarray() #array([[ 1., 0., 0., 1., 0., 0., 0., 0., 1.]])
newdf=pd.get_dummies(df,columns=["gender","title"],dummy_na=True)
le = sklearn.preprocessing.LabelEncoder() le.fit([1, 2, 2, 6]) le.transform([1, 1, 2, 6]) #array([0, 0, 1, 2]) #非数值型转化为数值型 le.fit(["paris", "paris", "tokyo", "amsterdam"]) le.transform(["tokyo", "tokyo", "paris"]) #array([2, 2, 1])
sklearn.preprocessing.robust_scale
poly = sklearn.preprocessing.PolynomialFeatures(2) poly.fit_transform(X)
机械节能产品生产企业官网模板...
大气智能家居家具装修装饰类企业通用网站模板...
礼品公司网站模板
宽屏简约大气婚纱摄影影楼模板...
蓝白WAP手机综合医院类整站源码(独立后台)...苏ICP备2024110244号-2 苏公网安备32050702011978号 增值电信业务经营许可证编号:苏B2-20251499 | Copyright 2018 - 2025 源码网商城 (www.ymwmall.com) 版权所有