源码网商城,靠谱的源码在线交易网站 我的订单 购物车 帮助

源码网商城

C#通过KD树进行距离最近点的查找

  • 时间:2021-05-23 10:43 编辑: 来源: 阅读:
  • 扫一扫,手机访问
摘要:C#通过KD树进行距离最近点的查找
本文首先介绍Kd-Tree的构造方法,然后介绍Kd-Tree的搜索流程及代码实现,最后给出本人利用C#语言实现的二维KD树代码。这也是我自己动手实现的第一个树形的数据结构。理解上难免会有偏差,敬请各位多多斧正。 [b]1. KD树介绍 [/b] Kd-Tree(KD树),即K-dimensional tree,是一种高维索引树形数据结构,常用于在大规模的高维数据空间进行最邻近查找和近似最邻近查找。我实现的KD树是二维的Kd - tree。目的是在点集中寻找最近点。参考资料是Kd-Tree的百度百科。并且根据百度百科的逻辑组织了代码。 [b]2. KD树的数学解释 [/b] [b]3. KD树的构造方法 [/b] 这里是用的二维点集进行构造Kd-tree。三维的与此类似。 树中每个节点的数据类型:
public class KDTreeNode
  {
    /// <summary>
    /// 分裂点
    /// </summary>
    public Point DivisionPoint { get; set; }

    /// <summary>
    /// 分裂类型
    /// </summary>
    public EnumDivisionType DivisionType { get; set; }

    /// <summary>
    /// 左子节点
    /// </summary>
    public KDTreeNode LeftChild { get; set; }

    /// <summary>
    /// 右子节点
    /// </summary>
    public KDTreeNode RightChild { get; set; }
  }


3.1 KD树构造逻辑流程 [list] [*]将所有的点放入集合a中[/*] [*]对集合所有点的X坐标求得方差xv,Y坐标求得方差yv[/*] [*]如果xv > yv,则对集合a根据X坐标进行排序。如果 yv > xv,则对集合a根据y坐标进行排序。[/*] [*]得到排序后a集合的中位数m。则以m为断点,将[0,m-2]索引的点放到a1集合中。将[m,a.count]索引的点放到a2的集合中(m点的索引为m-1)。[/*] [*]构建节点,节点的值为a[m-1],如果操作集合中节点的个数大于1,则左节点对[0,m-2]重复2-5步,右节点为对[m,a.count]重复2-5步;反之,则该节点为叶子节点。 [/*] [/list] 3.2 代码实现
private KDTreeNode CreateTreeNode(List<Point> pointList)
{
  if (pointList.Count > 0)
  {
    // 计算方差
    double xObtainVariance = ObtainVariance(CreateXList(pointList));
    double yObtainVariance = ObtainVariance(CreateYList(pointList));

    // 根据方差确定分裂维度
    EnumDivisionType divisionType = SortListByXOrYVariances(xObtainVariance,    yObtainVariance, ref pointList);

    // 获得中位数
    Point medianPoint = ObtainMedian(pointList);
    int medianIndex = pointList.Count / 2;

    // 构建节点
    KDTreeNode treeNode = new KDTreeNode()
    {
      DivisionPoint = medianPoint,
      DivisionType = divisionType,
      LeftChild = CreateTreeNode(pointList.Take(medianIndex).ToList()),
      RightChild = CreateTreeNode(pointList.Skip(medianIndex + 1).ToList())
    };
    return treeNode;
  }
  else
  {
    return null;
  }
}


[b]4. KD树搜索方法[/b] Kd-Tree的总体搜索流程先根据普通的查找找到一个最近的叶子节点。但是这个叶子节点不一定是最近的点。再进行回溯的操作找到最近点。 4.1 KD树搜索逻辑流程 [list] [*]对于根据点集构建的树t,以及查找点p.将根节点作为节点t进行如下的操作[/*] [*]如果t为叶子节点。则得到最近点n的值为t的分裂点的值,跳到第5步;如果t不是叶子节点,进行第3步[/*] [*]则确定t的分裂方式,如果是按照x轴进行分裂,则用p的x值与节点的分裂点的x值进行比较,反之则进行Y坐标的比较[/*] [*]如果p的比较值小于t的比较值,则将t指定为t的左孩子节点。反之将t指定为t的右孩子节点,执行第2步[/*] [*]定义检索点m,将m设置为n[/*] [*]计算m与p的距离d1,n与m的距离d2。[/*] [*]如果d1 >= d2且有父节点,则将m的父节点作为m的值执行5步,若没有父节点,则得到真正的最近点TN; 如果d1 < d2就表示n点不是最近点,执行第8步[/*] [*]若n有兄弟节点,则 n = n的兄弟节点;若n没有兄弟节点,则 n = n的父节点。删除原来的n节点。将m的值设置为新的n节点;执行第6步。 [/*] [/list] 4.2 代码实现
public Point FindNearest(Point searchPoint)
{
  // 按照查找方式寻找最近点
  Point nearestPoint = DFSSearch(this.rootNode, searchPoint);
  
  // 进行回溯
  return BacktrcakSearch(searchPoint, nearestPoint);
}


private Point DFSSearch(KDTreeNode node,Point searchPoint,bool pushStack = true)
{
  if(pushStack == true)
  {
    // 利用堆栈记录查询的路径,由于树节点中没有记载父节点的原因
    backtrackStack.Push(node);
  }
  if (node.DivisionType == EnumDivisionType.X)
  {
    return DFSXsearch(node,searchPoint);
  }
  else
  {
    return DFSYsearch(node, searchPoint);
  }
}

private Point BacktrcakSearch(Point searchPoint,Point nearestPoint)
{
  // 如果记录路径的堆栈为空则表示已经回溯到根节点,则查到的最近点就是真正的最近点
  if (backtrackStack.IsEmpty())
  {
    return nearestPoint;
  }
  else
  {
    KDTreeNode trackNode = backtrackStack.Pop();
    
    // 分别求回溯点与最近点距查找点的距离
    double backtrackDistance = ObtainDistanFromTwoPoint(searchPoint,     trackNode.DivisionPoint);
    double nearestPointDistance = ObtainDistanFromTwoPoint(searchPoint, nearestPoint);
    
    if (backtrackDistance < nearestPointDistance)
    {
      // 深拷贝节点的目的是为了避免损坏树
      KDTreeNode searchNode = new KDTreeNode()
      {
        DivisionPoint = trackNode.DivisionPoint,
        DivisionType = trackNode.DivisionType,
        LeftChild = trackNode.LeftChild,
        RightChild = trackNode.RightChild
      };
      nearestPoint = DFSBackTrackingSearch(searchNode, searchPoint);
   }
   // 递归到根节点
   return BacktrcakSearch(searchPoint, nearestPoint);
  }
}


[b]5. 源码交流 [/b] [url=https://github.com/CreamMilk/C-Kd-Tree]https://github.com/CreamMilk/C-Kd-Tree[/url] 以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持编程素材网。
  • 全部评论(0)
联系客服
客服电话:
400-000-3129
微信版

扫一扫进微信版
返回顶部