#coding:utf-8
import numpy as np
import lda
import lda.datasets
import jieba
import codecs
class LDA_v20161130():
def __init__(self, topics=2):
self.n_topic = topics
self.corpus = None
self.vocab = None
self.ppCountMatrix = None
self.stop_words = [u',', u'。', u'、', u'(', u')', u'·', u'!', u' ', u':', u'“', u'”', u'\n']
self.model = None
def loadCorpusFromFile(self, fn):
# 中文分词
f = open(fn, 'r')
text = f.readlines()
text = r' '.join(text)
seg_generator = jieba.cut(text)
seg_list = [i for i in seg_generator if i not in self.stop_words]
seg_list = r' '.join(seg_list)
# 切割统计所有出现的词纳入词典
seglist = seg_list.split(" ")
self.vocab = []
for word in seglist:
if (word != u' ' and word not in self.vocab):
self.vocab.append(word)
CountMatrix = []
f.seek(0, 0)
# 统计每个文档中出现的词频
for line in f:
# 置零
count = np.zeros(len(self.vocab),dtype=np.int)
text = line.strip()
# 但还是要先分词
seg_generator = jieba.cut(text)
seg_list = [i for i in seg_generator if i not in self.stop_words]
seg_list = r' '.join(seg_list)
seglist = seg_list.split(" ")
# 查询词典中的词出现的词频
for word in seglist:
if word in self.vocab:
count[self.vocab.index(word)] += 1
CountMatrix.append(count)
f.close()
#self.ppCountMatrix = (len(CountMatrix), len(self.vocab))
self.ppCountMatrix = np.array(CountMatrix)
print "load corpus from %s success!"%fn
def setStopWords(self, word_list):
self.stop_words = word_list
def fitModel(self, n_iter = 1500, _alpha = 0.1, _eta = 0.01):
self.model = lda.LDA(n_topics=self.n_topic, n_iter=n_iter, alpha=_alpha, eta= _eta, random_state= 1)
self.model.fit(self.ppCountMatrix)
def printTopic_Word(self, n_top_word = 8):
for i, topic_dist in enumerate(self.model.topic_word_):
topic_words = np.array(self.vocab)[np.argsort(topic_dist)][:-(n_top_word + 1):-1]
print "Topic:",i,"\t",
for word in topic_words:
print word,
print
def printDoc_Topic(self):
for i in range(len(self.ppCountMatrix)):
print ("Doc %d:((top topic:%s) topic distribution:%s)"%(i, self.model.doc_topic_[i].argmax(),self.model.doc_topic_[i]))
def printVocabulary(self):
print "vocabulary:"
for word in self.vocab:
print word,
print
def saveVocabulary(self, fn):
f = codecs.open(fn, 'w', 'utf-8')
for word in self.vocab:
f.write("%s\n"%word)
f.close()
def saveTopic_Words(self, fn, n_top_word = -1):
if n_top_word==-1:
n_top_word = len(self.vocab)
f = codecs.open(fn, 'w', 'utf-8')
for i, topic_dist in enumerate(self.model.topic_word_):
topic_words = np.array(self.vocab)[np.argsort(topic_dist)][:-(n_top_word + 1):-1]
f.write( "Topic:%d\t"%i)
for word in topic_words:
f.write("%s "%word)
f.write("\n")
f.close()
def saveDoc_Topic(self, fn):
f = codecs.open(fn, 'w', 'utf-8')
for i in range(len(self.ppCountMatrix)):
f.write("Doc %d:((top topic:%s) topic distribution:%s)\n" % (i, self.model.doc_topic_[i].argmax(), self.model.doc_topic_[i]))
f.close()
if __name__=="__main__":
_lda = LDA_v20161130(topics=20)
stop = [u'!', u'@', u'#', u',',u'.',u'/',u';',u' ',u'[',u']',u'$',u'%',u'^',u'&',u'*',u'(',u')',
u'"',u':',u'<',u'>',u'?',u'{',u'}',u'=',u'+',u'_',u'-',u'''''']
_lda.setStopWords(stop)
_lda.loadCorpusFromFile(u'C:\\Users\Administrator\Desktop\\BBC.txt')
_lda.fitModel(n_iter=1500)
_lda.printTopic_Word(n_top_word=10)
_lda.printDoc_Topic()
_lda.saveVocabulary(u'C:\\Users\Administrator\Desktop\\vocab.txt')
_lda.saveTopic_Words(u'C:\\Users\Administrator\Desktop\\topic_word.txt')
_lda.saveDoc_Topic(u'C:\\Users\Administrator\Desktop\\doc_topic.txt')
机械节能产品生产企业官网模板...
大气智能家居家具装修装饰类企业通用网站模板...
礼品公司网站模板
宽屏简约大气婚纱摄影影楼模板...
蓝白WAP手机综合医院类整站源码(独立后台)...苏ICP备2024110244号-2 苏公网安备32050702011978号 增值电信业务经营许可证编号:苏B2-20251499 | Copyright 2018 - 2025 源码网商城 (www.ymwmall.com) 版权所有