def backprop(self,x,y):
nabla_b = [np.zeros(b.shape) for b in self.biases]
nabla_w = [np.zeros(w.shape) for w in self.weights]
# 通过输入x,前向计算输出层的值
activation = x
activations = [x]# 存储的是所以的输出层
zs = []
for b,w in zip(self.biases,self.weights):
z = np.dot(w,activation)+b
zs.append(z)
activation = sigmoid(z)
activations.append(activation)
# 计算输出层的error
delta = self.cost_derivative(activations[-1],y)*sigmoid_prime(zs[:-1])
nabla_b[-1] = delta
nabla_w[-1] = np.dot(delta,activations[-2].transpose())
#反向更新error
for l in xrange(2,self.num_layers):
z = zs[-l]
sp = sigmoid_prime(z)
delta = np.dot(self.weight[-l+1].transpose(),delta)*sp
nabla_b[-l] = delta
nabla_w[-l] = np.dot(delta,activations[-l-1].transpose())
return (nabla_b,nabla_w)
def cost_derivative(self,output_activation,y): return (output_activation-y) def sigmoid(z): return 1.0/(1.0+np.exp(z)) def sigmoid_prime(z): return sigmoid(z)*(1-sigmoid(z))
机械节能产品生产企业官网模板...
大气智能家居家具装修装饰类企业通用网站模板...
礼品公司网站模板
宽屏简约大气婚纱摄影影楼模板...
蓝白WAP手机综合医院类整站源码(独立后台)...苏ICP备2024110244号-2 苏公网安备32050702011978号 增值电信业务经营许可证编号:苏B2-20251499 | Copyright 2018 - 2025 源码网商城 (www.ymwmall.com) 版权所有