源码网商城,靠谱的源码在线交易网站 我的订单 购物车 帮助

源码网商城

python中学习K-Means和图片压缩

  • 时间:2022-01-22 00:21 编辑: 来源: 阅读:
  • 扫一扫,手机访问
摘要:python中学习K-Means和图片压缩
大家在学习python中,经常会使用到K-Means和图片压缩的,我们在此给大家分享一下K-Means和图片压缩的方法和原理,喜欢的朋友收藏一下吧。 [img]http://files.jb51.net/file_images/article/201711/2017112011261316.png[/img] 通俗的介绍这种压缩方式,就是将原来很多的颜色用少量的颜色去表示,这样就可以减小图片大小了。下面首先我先介绍下K-Means,当你了解了K-Means那么你也很容易的可以去理解图片压缩了,最后附上图片压缩的核心代码。 K-Means的核心思想 [img]http://files.jb51.net/file_images/article/201711/2017112011261317.png[/img] [img]http://files.jb51.net/file_images/article/201711/2017112011261418.png[/img] k-means的核心算法也就上面寥寥几句,下面将分三个部分来讲解:初始化簇中心、簇分配、簇中心移动。 初始化簇中心 [img]http://files.jb51.net/file_images/article/201711/2017112011261419.png[/img] 随机取簇中心若是不幸,会出现局部最优的情况;想要打破这种情况,需要多次取值计算来解决这种情况。 代价函数 [img]http://files.jb51.net/file_images/article/201711/2017112011261420.png[/img] 代码实现
J = zeros(100,1);
M = size(X,1);
min = inf;
for i = 1:100
%随机取k个样本点作为簇中心
randidx = randperm(M);
initial_centroids = X(randidx(1:K),:);
%将所得的中心点进行训练
[centroids0, idx] = runkMeans(X, initial_centroids,10);
for k = 1:M 
J(i) = J(i) + sum((X(k,:) - centroids0(idx(M),:)).^2); 
end
%取最小代价为样本中心点
if(min > J(i))
centroids =centroids0;
end
end
簇分配 将样本点分配到离它最近的簇中心下
tmp = zeros(K,1);
for i = 1:size(X,1)
for j = 1:K
tmp(j) = sum((X(i,:) - centroids(j,:)).^2);
end
[mins,index]=min(tmp);
idx(i) = index;
end
簇中心移动 取当前簇中心下所有样本点的均值为下一个簇中心
for i = 1:m
centroids(idx(i),:) = centroids(idx(i),:) + X(i,:);
end

for j = 1:K
centroids(j,:) = centroids(j,:)/sum(idx == j);
end
图片压缩
% 加载图片
A = double(imread('dragonfly.jpg'));
% 特征缩减
A = A / 255; 
img_size = size(A);
X = reshape(A, img_size(1) * img_size(2), 3);
K = 16; 
max_iters = 10;

%开始训练模型
initial_centroids = kMeansInitCentroids(X, K);
[centroids, idx] = runkMeans(X, initial_centroids, max_iters);

%开始压缩图片
idx = findClosestCentroids(X, centroids);
X_recovered = centroids(idx,:);
X_recovered = reshape(X_recovered, img_size(1), img_size(2), 3);
%输出所压缩的图片
subplot(1, 2, 2);
imagesc(X_recovered)
  • 全部评论(0)
联系客服
客服电话:
400-000-3129
微信版

扫一扫进微信版
返回顶部