源码网商城,靠谱的源码在线交易网站 我的订单 购物车 帮助

源码网商城

python计算最大优先级队列实例

  • 时间:2021-04-07 23:36 编辑: 来源: 阅读:
  • 扫一扫,手机访问
摘要:python计算最大优先级队列实例
[u]复制代码[/u] 代码如下:
# -*- coding: utf-8 -*- class Heap(object):     @classmethod     def parent(cls, i):         """父结点下标"""         return int((i - 1) >> 1);     @classmethod     def left(cls, i):         """左儿子下标"""         return (i << 1) + 1;     @classmethod     def right(cls, i):         """右儿子下标"""         return (i << 1) + 2; class MaxPriorityQueue(list, Heap):     @classmethod     def max_heapify(cls, A, i, heap_size):         """最大堆化A[i]为根的子树"""         l, r = cls.left(i), cls.right(i)         if l < heap_size and A[l] > A[i]:             largest = l         else:             largest = i         if r < heap_size and A[r] > A[largest]:             largest = r         if largest != i:             A[i], A[largest] = A[largest], A[i]             cls.max_heapify(A, largest, heap_size)     def maximum(self):         """返回最大元素,伪码如下:         HEAP-MAXIMUM(S)         1  return A[1]         T(n) = O(1)         """         return self[0]     def extract_max(self):         """去除并返回最大元素,伪码如下:         HEAP-EXTRACT-MAX(A)         1  if heap-size[A] < 1         2    then error "heap underflow"         3  max ← A[1]         4  A[1] ← A[heap-size[A]] // 尾元素放到第一位         5  heap-size[A] ← heap-size[A] - 1 // 减小heap-size[A]         6  MAX-HEAPIFY(A, 1) // 保持最大堆性质         7  return max         T(n) = θ(lgn)         """         heap_size = len(self)         assert heap_size > 0, "heap underflow"         val = self[0]         tail = heap_size - 1         self[0] = self[tail]         self.max_heapify(self, 0, tail)         self.pop(tail)         return val     def increase_key(self, i, key):         """将i处的值增加到key,伪码如下:         HEAP-INCREASE-KEY(A, i, key)         1  if key < A[i]         2    the error "new key is smaller than current key"         3  A[i] ← key         4  while i > 1 and A[PARENT(i)] < A[i] // 不是根结点且父结点更小时         5    do exchange A[i] ↔ A[PARENT(i)] // 交换两元素         6       i ← PARENT(i) // 指向父结点位置         T(n) = θ(lgn)         """         val = self[i]         assert key >= val, "new key is smaller than current key"         self[i] = key         parent = self.parent         while i > 0 and self[parent(i)] < self[i]:             self[i], self[parent(i)] = self[parent(i)], self[i]             i = parent(i)     def insert(self, key):         """将key插入A,伪码如下:         MAX-HEAP-INSERT(A, key)         1  heap-size[A] ← heap-size[A] + 1 // 对元素个数增加         2  A[heap-size[A]] ← -∞ // 初始新增加元素为-∞         3  HEAP-INCREASE-KEY(A, heap-size[A], key) // 将新增元素增加到key         T(n) = θ(lgn)         """         self.append(float('-inf'))         self.increase_key(len(self) - 1, key) if __name__ == '__main__':     import random     keys = range(10)     random.shuffle(keys)     print(keys)     queue = MaxPriorityQueue() # 插入方式建最大堆     for i in keys:         queue.insert(i)     print(queue)     print('*' * 30)     for i in range(len(keys)):         val = i % 3         if val == 0:             val = queue.extract_max() # 去除并返回最大元素         elif val == 1:             val = queue.maximum() # 返回最大元素         else:             val = queue[1] + 10             queue.increase_key(1, val) # queue[1]增加10         print(queue, val)     print([queue.extract_max() for i in range(len(queue))])
  • 全部评论(0)
联系客服
客服电话:
400-000-3129
微信版

扫一扫进微信版
返回顶部